

Aug. 2016

PRODUCT INFORMATION Chemical Resistance of Duropal Laminates

thermopal

High-pressure laminates with melamine surfaces are predestined for areas with high hygiene standards. Because they are distinguished by being easy to clean, maintain, and disinfect. They are hygienic, environmentally friendly, nontoxic, and food safe. Besides, they are also very robust and durable.

Cleaning and disinfection

DUROPAL

G wodego

Duropal laminates are highly resistant to most chemicals and disinfectants. This allows for regular and thorough cleaning which, for example, supports the hygiene schedules applicable on site.

The cleanability and good disinfectability is supported by the fact that laminates are made of duroplast resins which create a stable, resistant and reactivatable material. In addition, the surface is completely sealed, which means that it is free of pores. Dirt and germs cannot settle on it sustainably.

There is variety of surface disinfectants available on the market which differ distinctively in their ingredients, their modes of action and application, for example, as far as their frequency of use and surface retention times are concerned.

Duropal laminates are resistant to disinfectants based on:

Alcohols :	e.g. ethanol 70%
Aldehydes:	e.g. Formalin 1% und 5%
Phenols:	e.g. p-chloro-m-cresol 0.3%

In the event that other chemicals than those mentioned here and in the following are supposed to come into contact with Duropal laminate, the compatibility of each must be tested individually.

Aug. 2016

Stain resistance according to EN 438:2005

The applicable product specification for high-pressure laminates describes the method according to which the properties stain resistance of laminate surfaces are tested by means of an exposure various substances. The surface is brought into contact with substances which they might be exposed to in daily use. The duration and conditions of this contact is specifically defined for each single substance.

Table 1:

DUROPAL

Stain-producing substances		Exposure time
Group 1 • Acetone • Other organic solvents • Toothpaste • Hand cream • Urine • Alcoholic beverages • Natural fruit and vegetable juices • Lemonade and fruit drinks • Meats and sausages • Animal and vegetable fats and oils • Water • Yeast suspension in water	 Salt (NaCl) solutions Mustard Lyes, soap solutions Cleaning solution consisting of: 23 % dodecylbenzene sulfonate 10 % alkyl aryl polyglycol ether 67 % water Commercial disinfectants Stain or paint removers based on organic solvents Citric acid (10% solution) 	16 h
 Group 2 Coffee (120g of coffee per litre of water) Black tea (9g of tea per litre of water) Milk (all types) Cola beverages Wine vinegar Alkaline-based cleaning agents (to 10% concentration with water) Hydrogen peroxide (3% solution) 	 Ammonia (10% solution of commercial concentrate) Nail varnish Nail varnish remover Lipstick Water colours Laundry marking inks Ball point inks 	16 h
 Group 3 Sodium hydroxide (25% solution) Hydrogen peroxide (30% solution) Concentrated vinegar (30% acetic acid) Bleaching agents and sanitary cleaners containing them Hydrochloric acid based cleaning agents (≤ 3% HCl) Acid-based metal cleaners Iodine Hair colouring and bleaching agents 	 Shoe polish Boric acid Lacquers and adhesives (except fast curing materials) Amidosulfonic acid descaling agents (< 10% solution) Mercurochrome® (2,7-dibromo-4-hydroxymercurifluoresein, disodium salt) 	10 min

At the end of the exposure time the laminate surface is washed off and examined for traces that remain on the surface:

+49 (0) 9181 28 - 480 +49 (0) 9181 28 - 482 info@pfleiderer.com www.pfleiderer.com

Telefon

Telefax

Grade 5: No visible damage/alteration.

G wodego

- Grade 4: Minor alteration/damage of gloss level and/or color which is only visible under certain viewing angles.
- Grade 3: Moderate alteration/damage of gloss level and/or color.

thermopal

- Grade 2: Significant alteration/damage of gloss level and/or color.
- Grade 1: Surface alteration/damage and/or blistering.

Substances not causing any alteration on laminate surfaces

Please refer to the respective technical data sheet in order to look up the grade of stain resistance that applies to a specific Duropal product.

Chemical Resistance

DUROPAL

Application in laboratory settings puts high demands on the resistance of surfaces, as the latter often come into direct contact with a great diversity of chemical substances.

Duropal laminates are resistant to organic solvents. Cleaners like acetone and substances like vinegar, coffee and blood do not leave any residues on the surface. Neither can diluted alkali or acid solutions harm the laminate surface if the permissible exposure times are observed. However, caution is advised in case of strong dyes or strong oxidizing agents.

As the properties and the composition of chemicals may not always be known, it is categorically advisable to remove chemical substances from the decorative laminate surface without delay.

The substances mentioned in Table 2 do not cause any damage to melamine surfaces even after a prolonged exposure time (16 hours):

Table 2:

oussiances not causing any attention on laminate	54114005
Α	Amyl acetate CH ₃ COOC₅H ₁₁
Acetic acid CH ₃ COOH	Amyl alcohol C ₅ H ₁₁ OH
Acetic acid ethyl ester CH ₃ COOC ₂ H ₅	A-naphthole C ₁₀ H ₇ OH
Acetic acid iso-amyl ester CH ₃ COOC ₅ H ₁₁	A-naphthylamine C ₁₀ H ₇ NH ₂
Acetone CH ₃ COCH ₃	Arabinose C ₅ H ₁₀ O ₅
Alcoholic beverages ROH	Ascorbic acid C ₆ H ₈ O ₆
Alcohols (any) ROH	Asparagine C ₄ H ₈ O ₃ N ₂
Aldehydes RCHO	Aspartic acid $C_4H_7O_4N$
Alum solution KAI(SO ₄) ₃	В
Aluminium sulphate Al ₂ (SO ₄) ₃	Barium chloride BaCl ₂
Amides RCONH ₂	Barium sulphate BaSO ₄
Amines (any)	Benzaldehyde C ₆ H ₅ CHO
Ammonia NH4OH	Benzene C ₆ H ₆
Ammonium chloride NH ₄ CL	Benzidine $NH_2C_6H_4C_6H_4NH_2$
Ammonium sulphate (NH ₄) ₂ SO ₄	Benzoic acid C ₆ H ₅ COOH
Ammonium thiocyanate NH ₄ SCN	Blood group test Sera

Aug. 2016

Aug. 2016

	1 (dg) 2010
Boric acid H ₃ BO ₃	Hexane C ₆ H ₁₄
Butyl acetate CH ₃ COOC ₄ H ₉	Hexanol C ₆ H ₁₃ OH
Butyl alcohol C₄H₀OH	Hydrogen peroxide 3% H ₂ O ₂
C	Hydroquinone HOC ₆ H ₄ OH
Cadmium acetate Cd(CH ₃ COO) ₂	1
Cadmium sulphate CdSO ₄	Ink
Calcium carbonate CaCO ₃	Inorganic salts and their mixtures
Calcium chloride CaCl ₂	(Exceptions: s. Table 3)
Calcium hydroxide Ca(OH) ₂	Inositol C ₆ H ₆ (OH) ₆
Calcium nitrate Ca(NO ₃) ₂	Isopropanol C ₃ H ₆ OH
Calcium oxide CaO	К
cane sugar $C_{12}H_{22}O_{11}$	Ketones (any) RCOR
Carbolic acid C ₆ H₅OH	L
Carbol-xylene $C_6H_5OH-C_6H_4(CH_3)_2$	Lactic acid CH ₃ CHOHCOOH
Cement	Lactose C ₁₂ H ₂₂ O ₁₁
Chloral hydrate CCI ₃ CH(OH) ₂	Levulose C ₆ H ₁₂ O ₆
Chlorobenzene C ₆ H ₅ Cl	Lead acetate Pb(CH ₃ COO) ₂
Cholesterol C27H45OH	Lead nitrate Pb(NO ₃) ₂
Citric acid C ₆ H ₈ O ₇	Lithium carbonate Li ₂ CO ₃
Cocaine C ₁₇ H ₂₁ O ₄ N	Lithium hydroxide up to 10% LiOH
Copper sulphate CuSO ₄	Μ
Cresol CH ₃ C ₆ H ₄ OH	Magnesium carbonate MgCO ₃
Cresylic acid CH ₃ C ₆ H ₄ COOH	Magnesium chloride MgCl ₂
Cyclohexane C ₆ H ₁₂	Magnesium hydroxide Mg(OH) ₂
D	Magnesium sulphate MgSO ₄
Digitonine C ₅₆ H ₉₂ O ₂₉	Maltose C ₁₂ H ₂₂ O ₁₁
Dimethylformamide HCON(CH ₃) ₂	Mannite C ₆ H ₁₄ O ₆
Dimethyl sulfoxide (CH ₃) ₂ SO	Mannose C ₆ H ₁₂ O ₆
Dioxane C ₄ H ₈ O ₂	Mercury Hg
Dulcite C ₆ H ₁₄ O ₆	Meso inosite C ₆ H ₆ (OH) ₆
F	Methanol CH ₃ OH
Formaldehyde HCHO	Methylene chloride CH ₂ CL ₂
Formic acid up to 10% HCOOH	Mineral oils
Fructose/Galactose C ₆ H ₁₂ O ₆	Mineral salts (Exceptions: s. Table 3)
G	N
Gelatin	Nail polish
Glacial acetic acid CH ₃ COOH	Nail polish remover
Glucose C ₆ H ₁₂ O ₆	Nickel sulphate NiSO ₄
Glycerine CH ₂ OH CHOH CH ₂ OH	Nicotine C ₁₀ H ₁₄ N ₂
Glycocoll NH ₂ CH ₂ COOH	0
Glycol (any) HOCH ₂ CH ₂ OH	Octanol (octyl alcohol) C ₈ H ₁₈ O
Graphite (carbon) C	Oleic acid CH ₃ (CH ₂) ₇ CH:CH(CH ₂) ₇ COOH
Gypsum CaSO ₄ 2H ₂ O	Olive oil
Н	Ρ
Heptanol C ₇ H ₁₅ OH	P-aminoacetophenone $NH_2C_6H_4COCH_3$

+49 (0) 9181 28 - 480 +49 (0) 9181 28 - 482 info@pfleiderer.com www. pfleiderer.com

Telefon

Telefax

Aug. 2016 Paraffin oil Sorbitol C₆H₁₄O₆ Paraffin C_nH_{2n+2} Starch Pentanol C₅H₁₂OH Stearic acid C17H35COOH Percaulic acid HCLO₄ Styrene C₆H₅ CH:CH₂ Phenol & phenolic derivatives C₆H₅OH Sugar and sugar derivatives H₂₂O₁₁ Phenolphthalein C₂₀H₁₄O₄ Sulphur S p-Nitrophenol C₆H₄NO₂OH Т Potassium chloride KCI Talcum Mg3[Si4O10 (OH)2] Potassium hydroxide up to 10% KOH Tannin C₇₆H₅₂O₄₆ Potassium iodate KIO₃ Tartaric acid C₄H₈O₆ Potassium nitrate KNO₃ Tetrachloromethane CCl₄ Potassium Sodium tartrate KNaC₄H₄O₆ Tetrahydrofuran C₄H₈O Potassium sulphate K₂SO₄ Tetralin C₁₀H₁₂ Potassium tartrate K₂C₄H₄O₆ Thiourea NH₂CSNH₂ Potassium aluminium sulphate KAI(SO₄)₂ Thymol C₁₀H₁₄O Potassium bromate KBrO₃ Toluene C₆H₅CH₃ Potassium bromide KBr Trehalose C₁₂H₂₂O₁₁ Potassium carbonate K₂CO₃ Trichloroethylene C₂HCl₃ Potassium hexacyanoferrate K₄Fe(CN)₆ Tryptophan C₁₁H₁₂O₂N₂ Propanol C₃H₇OH Turpentine U 1,2-Propylenglycol CH₃CHOHCH₂OH Pyridine C5H5N Urea solution CO(NH₂)₂ R Uric acid C5H4N4O3 Raffinose C18H32O11 5H20 ۷ Rhamnose C₆H₁₂O₅H₂O Vanillin C₈H₈O₃ S w Salicylic acid C₆H₄OHCOOH Water H₂O Х Salicylic aldehyde C₆H₄OH CHO Sodium acetate CH₃COONa Xylene C₆H₄(CH₃)₂ z Sodium carbonate Na₂CO₃ Sodium chloride NaCl Zinc chloride ZnCl₂ Zink sulfate ZnSO₄ Sodium citrate Na₃C₆H₅O₇ 5H₂0 Sodium diethyl barbiturate NaC₈H₁₁N₂O₃ Sodium hydrogen carbonate NaHCO₃ Sodium bisulfite NaHSO₃ Sodium hydroxide up to 10% NaOH Sodium hyposulphite Na₂S₂O₄ Sodium nitrate NaNO₃ Sodium phosphate Na₃PO₄ Sodium silicate Na₂O₃Si Sodium sulphate Na₂SO₄ Sodium sulphide Na₂S Sodium sulphite Na₂SO₃ Sodium tartrate $Na_2C_4H_4O_6$ Sodium thiosulfate Na₂S₂O₃

thermopal

Aug. 2016

Some chemicals might cause damage to melamine surfaces depending on their pH value, exposure time, and temperature. The following substances must therefore be allowed to act for only a short period of time, at maximum for 10 to 15 minutes. in this time, the surface must first be wiped clean with a moist cloth and then wiped dry.

Table 3:

Substances causing laminate surface damage after prolonged exposure

Aluminium chloride AICl ₃	Millon's reagent OHg ₂ NH ₂ Cl
Amidosulfonic acid NH ₂ SO ₃ H	Nitric acid up to 10% HNO ₃
Ammonium hydrogen sulphate NH ₄ HSO ₄	Oxalic acid COOH COOH
Arsenic acid up to approx. 10% H ₃ AsO ₄	Phosphoric acid up to 10% H ₃ PO ₄
Crystal violet (Gentian violet) C ₂₅ H ₃₀ N ₃ Cl	Picric acid $C_6H_2OH(NO_2)_3$
Dyes and bleaching agents	Potassium chromate K ₂ CrO ₄
Ferric chloride FeCl ₂	Potassium di-chromate K ₂ Cr ₂ O ₇
Ferrous chloride FeCl ₃	Potassium hydrogen sulphate KHSO ₄
Formic acid up to 10% HCOOH	Potassium hydroxide over 10% KOH
Fuchsine C ₁₉ H ₁₉ N ₃ O	Potassium iodide Kl
Hydrochloric acid up to 10% HCI	Potassium permanganate KMnO ₄
Hydrogen peroxide 3-30% H ₂ O ₂	Silver nitrate AgNO ₃
Inorganic acids up to 10%	Sodium hydrogen sulphate NaHSO ₄
lodine l ₂	Sodium hydroxide over 10% NaOH
Lithium hydroxide over approx 10% LiOH	Sodium hypochlorite (chlorine bleach) NaOCI
Mercuric di-chromate HgCr ₂ O ₇	Sulphuric acid up to 10% H_2SO_4
Methylene Blue C ₁₆ H ₁₈ N ₃ CIS	

The chemicals listed in Table 4 cause irreversible laminate surface damage. Any contact, no matter how brief, should therefore be avoided.

Table 4:

Substances causing irreversible laminate-surface damage		
Adhesives (chemically hardened)	Hydrochloric acid* HCl	
Amidosulfonic acid* NH ₂ SO ₃ H	Hydrofluoric acid* HF	
Inorganic acids* eg	Hydrogen bromide* HBr	
Aqua regia* HNO ₃ + HCI = 1:3	Nitric acid* HNO ₃	
Arsenic acid H ₃ AsO ₄	Phosphoric acid* H ₃ PO ₄	
Chrome sulphuric acid* K ₂ Cr ₂ O ₇ + H ₂ SO ₄	Sulfuric acid* H ₂ SO ₄	
Formic acid* HCOOH		

* in concentrations over 10%

Aggressive gases

Aug. 2016

Aggressive gases might take an negative effect on the optical appearance of Duropal laminate surfaces. Normally, however, their functional characteristics will not be affected.

Table 5:

Substances causing laminate-surface damage
Acid fumes
Bromine Br ₂
Chlorine Cl ₂
Nitrous fumes NO _x / N _x O _y
Sulphur dioxide SO ₂

PM HPL/Elements

© Copyright 2016 Pfleiderer Holzwerkstoffe GmbH. This information was produced with great care. However, we cannot accept any responsibility for accuracy, completeness and up-to-dateness.

Because of the continual development and changes to our products, possible changes to the relevant norms, laws and provisions, our technical data sheets and product documents expressly represent no legally binding guarantee of the characteristics stated therein. In particular, no suitability may be derived for a concrete intended use. The individual user is therefore personally responsible for reviewing the processing and suitability of the products described in this document for each intended use beforehand, as well as observing the legal framework conditions and the respective current state of technology. Furthermore, we expressly refer to the validity of our general terms of business.

Pfleiderer Holzwerkstoffe GmbH Ingolstädter Straße 51 92318 Neumarkt Deutschland +49 (0) 9181 28 - 480 +49 (0) 9181 28 - 482 info@pfleiderer.com www.pfleiderer.com

Telefon

Telefax